Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 136(3): 205-212, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37331843

RESUMO

Green soybean, also known as edamame, is a legume with high nutritional and functional value. Despite its growing popularity and potential health benefits, the functionality of green soybean has not been thoroughly studied. Previous research on the functionality of green soybean has largely focused on a limited number of specific, well-studied, bioactive metabolites, without comprehensively investigating the metabolome of this legume. Additionally, very few studies have explored the improvement of the functional value of green soybean. This study aimed to investigate the metabolome profile of green soybean, identify bioactive metabolites, and to further explore the potential improvement of the identified bioactive metabolites using germination and tempe fermentation. A total of 80 metabolites were annotated from green soybean using GC-MS and HPLC-PDA-MS. Among them, 16 important bioactive metabolites were identified: soy isoflavones daidzin, glycitin, genistin, malonyl daidzin, malonyl genistin, malonyl glycitin, acetyl daidzin, acetyl genistin, acetyl glycitin, daidzein, glycitein, and genistein, as well as other metabolites including 3,4-dihydroxybenzoic acid, 3-hydroxyanthranillic acid, 3-hydroxy-3-methylglutaric acid (meglutol), and 4-aminobutyric acid (GABA). Germination and tempe fermentation techniques were employed to potentially improve the concentrations of these bioactive metabolites. While showing improvements in amino acid contents, germination process did not improve bioactive metabolites significantly. In contrast, tempe fermentation was found to significantly increase the concentrations of daidzein, genistein, glycitein, acetyl genistin, acetyl daidzin, 3-hydroxyanthranillic acid, and meglutol (>2-fold increase with p < 0.05) while also improving amino acid levels. This study highlights the potentials of germination and fermentation to improve the functionality of legumes, particularly green soybean.


Assuntos
Isoflavonas , /química , Genisteína/metabolismo , Fermentação , Meglutol/metabolismo , Isoflavonas/metabolismo , Aminoácidos/metabolismo , Metabolômica
2.
Front Mol Biosci ; 9: 1057709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438656

RESUMO

In recent years, mass spectrometry-based metabolomics has been established as a powerful and versatile technique for studying cellular metabolism by comprehensive analysis of metabolites in the cell. Although there are many scientific reports on the use of metabolomics for the elucidation of mechanism and physiological changes occurring in the cell, there are surprisingly very few reports on its use for the identification of rate-limiting steps in a synthetic biological system that can lead to the actual improvement of the host organism. In this mini review, we discuss different strategies for improving strain performance using metabolomics data and compare the application of metabolomics-driven strain improvement techniques in different host microorganisms. Finally, we highlight several success stories on the use of metabolomics-driven strain improvement strategies, which led to significant bioproductivity improvements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...